
PHYSICAL REVIEW E 67, 026207 ~2003!
Chaotic communications that are difficult to detect

T. L. Carroll
Code 6345, U.S. Naval Research Laboratory, Washington, D.C. 20375

~Received 23 September 2002; published 13 February 2003!

Work on self-synchronizing systems for communications has had limited practicality because the chaotic
signals were not as easy to detect in the presence of noise as conventional spread-spectrum signals. This
difficulty may actually be an advantage in some cases, where one wants to conceal the existence of the
communications signal. Conventional communications signals are cyclostationary; while they may look ran-
dom, they have statistical properties that vary periodically. One may design chaotic communication signals that
lack this cyclostationary property, and therefore are harder to detect.
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I. INTRODUCTION

While there has been much study of chaos applied
communications@1–13#, in many cases the chaos is more
a burden than an asset. Using chaotic signals instead o
riodic signals, or using self-synchronizing receivers inste
of stored reference receivers, usually results in signals
are harder to detect than conventional periodic or spr
spectrum signals.

There are some situations where one wants a signal th
hard for an eavesdropper to detect~known as low probability
of detection, or LPD, communications@14#!, and there may
be some application of chaos in this type of communicati
Conventional communications, including spread spectrum
based on periodic carrier signals, which are obviously ar
cial and have statistical properties such as cyclostationa
@14# that aid in their detection. Chaotic carrier signals may
generated by circuits that simulate natural processes, so
may not be so obviously artificial, and it is possible to ge
erate chaotic carriers that are not cyclostationary. While I
interested in generating LPD signals, I make no attemp
this paper to address questions of security. I am only in
ested in how difficult it is to determine that a communicati
signal is present, and not in how difficult it is to extra
information from that signal.

II. CYCLOSTATIONARITY

Random signals may have statistical properties that v
periodically with time, in which case they are called cyclo
tationary@14,15#. Cyclostationarity may be detected in a si
nal by calculating the autocorrelation of the power spectru
If x(t) is a signal andX( f ) is its Fourier transform, then th
autocorrelation of the power spectrum is

G~ f !5

E
2`

`

X~ f !X* ~ f 2f!df

E
2`

`

X~f!X* ~f!df

. ~1!

A large cross correlation at a particular frequency in the F
rier spectrum indicates the presence of cyclostationarity~an
analogous result holds for discrete signals!. From the
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Wiener-Khintchine theorem@16#, the Fourier transform of
the autocorrelation of a signal is the square of the Fou
transform of the signal. To find the autocorrelation of t
frequency spectrum, one may simply take the square ofx(t),
Fourier transform, and search for large components at
crete frequencies.

III. DIRECT SEQUENCE SPREAD SPECTRUM

In order to say something is hard to detect, I must s
‘‘hard to detect compared to what.’’ For comparison, I ge
erated a simulated direct sequence spread-spectrum~DSSS!
signal@17,18#. In direct sequence spread spectrum, the inf
mation signal is a digital signal running at some ra
n bits s21. The spreading signal is a pseudorandom sig
running at a faster rate. For this example, I use a rate
50n bits s21. The spreading signal multiplies the informatio
signal ~in binary fashion! to produce the spread informatio
signal, which is then modulated onto a periodic carrier.
order to simulate the modulation, I use a simple modulat
called binary phase shift keying~BPSK! @18#, where the
phase of the carrier is modulated between two phase
phase of 0 for a binary 0 and a phase ofp radians for a
binary 1.

Since the spreading signal has a greater bandwidth
the information signal, it spreads the spectrum of the p
odic carrier. Figure 1 shows the power spectrum of a perio
signal before and after being modulated with a spread
signal. The peak power in the spread signal is greatly
duced from the unspread signal, and that reduction in po
is used to hide the spread signal below the background n
level. The DSSS receiver correlates a stored pseudoran
sequence with the transmitted signal to recover the inform
tion signal.

IV. CHAOTIC SYSTEM

The direct sequence spread-spectrum system is capab
operating at very low signal to noise ratios, but its depe
dence on a periodic carrier is a weak point. The perio
carrier causes the DSSS signal to be cyclostationary. E
though the signal itself is broadband, squaring the sig
makes it much easier to detect.

Although some narrowband chaotic signals may be
clostationary, it is possible to generate broadband cha
©2003 The American Physical Society07-1
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signals that are not cyclostationary. If the carrier signa
truly chaotic, it never repeats, and a stored reference rece
will not work. Instead, a self-synchronizing chaotic receiv
is used. Self-synchronizing systems require more signal
ergy in noisy environments than stored reference syste
but self-synchronizing systems are potentially simpler
build.

The well-known Lorenz system@19# is one example of a
broadband chaotic system. The Lorenz system is difficul
build as a circuit, however, and self-synchronized Lore
systems@4# are sensitive to added noise. I have previou
built self-synchronizing chaotic circuits which I could use
communicate when the noise levels were much larger t
the signal@20–22#, but these circuits required a carrier sign
that contained 2 narrowband signals well separated in
quency. In this paper, I design a similar chaotic system
has a broad frequency spectrum centered in one band. A
heart of this broadband chaotic system is a Rossler-like c
otic system with a variable time constant. This first part
the chaotic system is described by

dx1

dt
52t1a~0.05x110.5x21x3!, ~2a!

dx2

dt
52t1a~2x120.15x2!, ~2b!

dx3

dt
52t1a@2g~x1!1x3#, ~2c!

g~x!5H 0 x,3

15~x23! x>3J . ~2d!

FIG. 1. ~a! Power spectrum of a sinusoidal carrier signal befo
modulation with a direct sequence spread spectrum signal.~b!
Power spectrum of the carrier signal after modulation with a dir
sequence spread-spectrum signal.
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The system of Eq.~2! is just the piecewise-linear Rossle
system described in Ref.@23# with a variable time constant
The time constantt1 is fixed, but the signala varies with
time, effectively varying the time constants of Eq.~2!, which
causes the frequency of the chaotic oscillator to vary. A l
frequency limit cycle oscillator generates the time const
variation signala. The low frequency oscillator is self
oscillatory but is also driven by the signalx1 from Eq. ~2!.
The limit cycle oscillator is described by

dx4

dt
52t2~0.02x410.5x51x610.5ux1u1cj!, ~3a!

dx5

dt
52t2~2x420.02x512x3!, ~3b!

dx6

dt
52t2~2g~x4!1x6!, ~3c!

a511 f ~x4!, ~3d!

f ~x!5H 20.9 mx,20.9

mx 20.9<mx<0.9

0.9 mx.0.9
J . ~3e!

The functionf is a bounds function used to keepa from
getting too large or too small. The constantm sets the
amount of spreading. The signalz is a phase synchronizatio
signal @to be described below in Eq.~11!# used to inject
information into the limit cycle oscillator. Typically, the rati
t1 /t2 is '100, so that the signala causes the time constan
for Eq. ~2! to change slowly in an irregular fashion. Equ
tions ~2! and~3! are enough to produce a broadband chao
signal, but the phase of the signalx4 ~information will be
encoded on the phase ofx4) is easily determined from the
envelope of any of the signals from Eq.~2!. A further step is
necessary to reduce the detectability of the information s
nal. Equation~4! describes a second limit cycle oscillato
whose frequency is close to the limit cycle oscillator of E
~3! but incommensurate:

dx7

dt
52t3b~0.02x710.5x81x910.5ux1u10.2x3!,

~4a!

dx8

dt
52t3b~2x720.02x212x3!, ~4b!

dx9

dt
52t3b@2g~x7!1x9#, ~4c!

b511h~x4!, ~4d!

h~x!5H 20.9 mx,20.9

mx 20.9<mx<0.9

0.9 0.9,mx
J . ~4e!

t
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At the same time, the signala that modulates the time
constant for Eq.~2! becomes

a511 f ~x4x7! ~5!

and thex4 equation from Eq.~3! becomes

dx4

dt
52t2~0.02x410.5x51x610.5ux1u10.2x71cj!.

~6!

For this paper,t1510, t250.1, t350.279, andm50.2,
and Eqs.~2!–~6! were numerically simulated with a fourt
order Runge-Kutta routine@16# using a time step of 0.04 s
Figure 2 shows attractors for the chaotic part and the 2 li
cycle oscillators. The chaotic oscillator of Eq.~2! is nearly
periodic, so the concept of phase may be used to produ
driving signal. For communications, a signal with a const
envelope is desirable. If the oscillator was actually period
then the signal

z5
x2

Ax1
21x2

2
~7!

would be the sine of the phase angle of the oscillator, and
sine function has a constant envelope. The oscillator is
really periodic, but the signal is close enough to periodic t
the signalz in Eq. ~7! does have a constant envelope, so i
used as the transmitted signal.

An advantage to using this phase signal to drive the
sponse system is that the peak to peak amplitude is cons
as can be seen in Fig. 3. Inevitably, the amplitude ofz will
change as a result of the transmission ofz, but an automatic
gain control may be implemented to restore the amplitude
z at the receiver. The type of receiver used below is also
that sensitive to the exact amplitude ofz, so amplitude fluc-
tuations will not have a large effect on the receiver. Figur
also shows a power spectrum ofz, showing thatz is a broad-
band signal. The shape of the power spectrum ofz may be
altered by varying the spreading functionf in Eq. ~5!.

V. RESPONSE SYSTEM

The chaotic drive system is based on 3 subsystems, a
which oscillate independently, so it is not possible to build
response system that exactly synchronizes to the drive
tem. The response system is designed so that the limit c
parts phase synchronize@24# to their counterparts in the driv
system, and information is encoded on the phase of the l
cycle. The signal that varies the time constant of the cha
system may be recovered from the transmitted signalz. Al-
though a short time series ofz looks like a periodic signa
with a slow frequency modulation, the unmodulated vers
of z is not periodic but chaotic. The phase ofz varies chaoti-
cally. Becausez is chaotic, the time constant variation ca
not be recovered by a phase locked loop, which assumes
the carrier phase is constant and all phase variation co
from the modulating signal. Instead, a simpler techniq
based on a bandpass filter is used. A bandpass filter@25# is
modeled by
02620
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dc1

dt
5

1

R1C

dz

dt
2

1

R2C
c11c2 , ~8a!

dc2

dt
52

R11R3

R1R2R3
c2 , ~8b!

where R1514,261V, R252R1, and R35R1, and C
51025 F. Equation~8! models a bandpass filter with aQ of

FIG. 2. ~a! Attractor from chaotic part of the driving system@Eq.
~2!#. ~b! Attractor from first limit cycle oscillator of the driving
system of Eq.~3!. ~c! Attractor from second limit cycle oscillato
@Eq. ~4!# from the driving system.
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1 and a center frequency of 1.117 Hz, corresponding to
peak frequency of the chaotic system in Eq.~2! when a is
fixed at 1.

The bandpass filter passes signals at the center frequ
with no phase shift but shifts the phase of signals not at
center frequency, so the filter outputc2 will be shifted in
phase from the filter inputz by an amount corresponding t
the amplitude of the time constant variation signala. The
signala is recovered approximately as the signalc3, where

dc3

dt
5

t1

100
@sq~z!sq~c2!2c3#, ~9a!

sq~x!5H 21 x<0

1 x.0J . ~9b!

The rest of the response system is described by

g5220.015c3 , ~10a!

dy1

dt
52t1g~0.05y110.5y21y3!, ~10b!

dy2

dt
52t1g~2y120.17z10.02y2!, ~10c!

dy3

dt
52t1g@2g~y1!1y3#, ~10d!

dy4

dt
52t2~0.02y410.5y51y610.5uy1u!, ~10e!

FIG. 3. ~a! Transmitted signalz. ~b! Power spectrum of trans
mitted signalz.
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dy5

dt
52t2~2y420.02y512y3!, ~10f!

dy6

dt
52t2@2g~y4!1y6#, ~10g!

dy7

dt
52t3~0.02y710.5y81y910.5uy1u10.2y3!,

~10h!

dy8

dt
52t3~2y720.02y212y3!, ~10i!

dy9

dt
52t3@2g~y7!1y9#, ~10j!

g~y!5H 0 y,3

15~y23! y>3J . ~10k!

The response system is not an exact replica of the d
system, and synchronization is not exact. There is phase
chronization betweeny4 in the response andx4 in the drive
~as shown in Fig. 4!, so information is transmitted by modu
lating the phase ofx4 @26#. The phase difference in Fig. 4 i
calculated by the same method used in Ref.@24#. Every time
the x4 ~or y4) signal crosses 0 in the positive direction, th
phase of the oscillator is advanced by 2p. The dotted line in
Fig. 4 shows that the phase difference between drive
response systems increases when they are uncoupled.
solid line in Fig. 4 shows a constant phase difference for
coupled drive and response systems. There is a lag betw
drive and response phases, so the phase difference bet
the coupled drive and response systems oscillates betwe
and 2p because the drive oscillator crosses 0 before the
sponse oscillator.

The phase modulation signalj in Eq. ~3! is set equal to

j5sisin~v1t !20.1x4 , ~11!

FIG. 4. Phase difference between drive system of Eq.~3! and
response system of Eq.~10!. The solid line is for the coupled sys
tems, while the dotted line shows the phase difference with
coupling. The phase was measured by advancing the phase va
by 2p every time thex4 signal for the drive~or they4 signal for the
response! crossed 0 in the positive direction.
7-4
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wheresi561 depending on the value of the binary info
mation signal, and the coupling constantc50.2, andv/2p
50.0115 Hz, the frequency of the limit cycle oscillator
Eq. ~3!. The phase ofy4 is determined by a phase locke
loop @25# in the receiver.

VI. INFORMATION DETECTION

There are two types of detection considered in this pa
detection of the information contained in the communicat
signal and detection of the communications signal itself. P
ducing a signal that cannot be detected by an adversary is
very useful if we cannot detect the information content o
selves, so detection of the information content is conside
first. As described above, the information signal is pha
modulated onto thex4 signal in Eq. ~3! and detected by
detecting the phase of they4 signal in Eq.~10!. The standard
method that engineers use to characterize communicatio
ficiency is to plot the bit error rate (BER) @18# as a function
of the energy in one bit, normalized by the noise pow
spectral density~a flat noise spectrum is assumed!, abbrevi-
ated asEb /N0.

Figure 5 is a plot of the performance for the transmit
and receiver of Eqs.~2!–~11!, with noise that occupies th
same bandwidth as the signal. Figure 5 shows performa
for the receiver of Eqs.~8!–~10! and a receiver where th
phase is detected directly from the recovered time cons
modulation signalc3 in Eq. ~9!. The performance plot forc3
is included to show that it is more difficult to detect th
information content of the communication signal if one do
not know specific receiver details. The bit energies requi
to achieve low bit error rates in Fig. 5 are actually quite la
compared to the bit energies required for conventional co
munications signals@18# ~such as the DSSS signal!, but the
goal in those cases is to make signals that are easy to de
while the goal in this paper is to create a signal that is har
detect. The increased bit energy required to detect the in
mation content for the present method is due to 2 thin
self-synchronizing receivers do not perform, as well as
stored reference receivers used in conventional commun
tions, and they4 signal in the response system takes a lo

FIG. 5. Bit error rates (BER) as a function of energy per bi
normalized by noise power spectral density (Eb /N0) for two dif-
ferent receivers. The black circles are for the full chaotic respo
system of Eqs.~8!–~10!, while the open squares are for a conve
tional receiver defined by Eqs.~8! and ~9!.
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time to phase synchronize with thex4 signal in the drive
system. The coupling between the limit cycle oscillator th
generatesx4 ~andy4) and the chaotic system that genera
the transmitted signal is weak and nonlinear, so synchron
tion is slow. The weak coupling is necessary to make
communications signal harder to detect. In practical appli
tions, there may be hardware considerations that make
higher power requirements of the current method less o
disadvantage.

VII. DETECTABILITY

For covert communications, it is important that even t
presence of a communications signal not be detectable, s
the signal is a beacon that gives away the location of
transmitter. The simplest way to detect a signal is to de
the signal power, but if there are other features of the sig
such as cyclostationarity, then signal detection can be ea
than simply looking for power.

In order to calculate the probability of detection@14#,
some signal statistic is chosen, and the probability distri
tion for this statistic is found when there is no signal~only
noise is present! and when the signal plus noise are prese
The DSSS signal is cyclostationary@15#, so this property is
used to aid in detection. In the power spectrum of t
squared DSSS signal in Fig. 6, a peak at twice the car
frequency is obvious. I estimate the probability distributi
of the power at this frequency with noise only or with noi
plus signal present. The overlap in these probability distri
tions is the probability of either falsely detecting a signal
missing the presence of a signal. Subtracting the overlap
from 1.0 gives the probability of detection. Figure 7 sho
the probability of detectionPd as a function of signal to
noise ratioSN for the DSSS signal.

Figure 8 is the power spectrum of the squared signalz, the
transmitted signal from the chaotic system. The power sp
trum of z2 is still broad band because there are no stro
correlations in its frequency spectrum as there were for
DSSS signal with a periodic carrier. The presence of
signal z can only be inferred by looking for transmitte
power, a method known as the radiometer method@14#, so
the chaotic signal will be harder to detect. Probability dist
butions for noise only and noise plus the signalz are esti-
mated by measuring the average power present in the sig

e

FIG. 6. Power spectrum of the squared direct sequence spr
spectrum signal.
7-5
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T. L. CARROLL PHYSICAL REVIEW E67, 026207 ~2003!
The resulting probability of detection is also plotted in Fig
as a function of signal to noise ratios. Eventually the cur
for the DSSS signal and the chaos signal in Fig. 7 co
together because in both cases the probability of detec
approaches 0 for low signal to noise ratios.

VIII. CONCLUSIONS

This paper has demonstrated that the lack of a perio
carrier signal makes chaotic signals easier to hide than
ventional digital communications signals. The amount of

FIG. 7. Probability of detectionPd as a function of signal to
noise ratioSN for the direct sequence spread-spectrum signal~open
squares! and the chaotic signal~black circles!.
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ergy needed to transmit this particular chaotic signal w
large, but the main point here was to demonstrate tha
noncyclostationary chaotic signal could be used as a ca
signal, even when background noise was larger than the
nal. There are other properties of communications sign
that one may also want to hide. Higher order statistics
also reveal the type of modulation used@14#, which can give
information about who sent the signal. It is also possible
detect the chip rate@18# in a communications signal, which i
the clock rate for the underlying digital system. It may
possible to better conceal this identifying information by u
ing nonperiodic chaotic signals to carry the informati
signal.

FIG. 8. Power spectrum ofz2, wherez is the chaotic communi-
cation signal of Eq.~7!.
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